Drag Reduction and Flight Control Using Off-Body Energy Deposition

Completed Technology Project (2015 - 2018)

Project Introduction

What are the key technical challenges? Implementation of non-equilibrium thermochemistry; Accurate energy balance; Dynamic impulse measurements at Mach 2) What is your approach/research plan? Combined CFD/Experimental investigation; Bench laser deposition data (incident, transmitted power, blast wave expansion rate); Impulse for single energy pulses using model springmass system dynamic response. What are the innovative aspects (how is this different than what others are doing in industry, academia government)? Non-equilibrium thermochemistry rather than ideal gas; Full energy accounting for laser energy deposition; Wind tunnel model impulse drag measurements rather than steady state (reduces laser/experimental costs/ and risks)

Anticipated Benefits

Benefit to ARMD mission challenges

Primary U.S. Work Locations and Key Partners

Drag Reduction and Flight Control Using Off-Body Energy Deposition

Table of Contents

Project Introduction	1		
Anticipated Benefits			
Primary U.S. Work Locations			
and Key Partners	1		
Project Website:	2		
Organizational Responsibility	2		
Project Management	2		
Technology Maturity (TRL)	2		
Technology Areas	3		
Target Destination	3		

Center Innovation Fund: LaRC CIF

Drag Reduction and Flight Control Using Off-Body Energy Deposition

Completed Technology Project (2015 - 2018)

Organizations Performing Work	Role	Туре	Location
★Langley Research Center(LaRC)	Lead Organization	NASA Center	Hampton, Virginia
Rutgers University- New Brunswick	Supporting Organization	Academia Asian American Native American Pacific Islander (AANAPISI), Hispanic Serving Institutions (HSI)	New Brunswick, New Jersey

Primary	v U.S.	Work	Locations
---------	--------	------	-----------

Virginia

Project Website:

 $https://www.nasa.gov/directorates/spacetech/innovation_fund/index.html\#.V\zeta$

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Langley Research Center (LaRC)

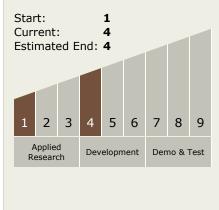
Responsible Program:

Center Innovation Fund: LaRC CIF

Project Management

Program Director:

Michael R Lapointe


Program Manager:

Julie A Williams-byrd

Principal Investigator:

Stephen P Wilkinson

Technology Maturity (TRL)

Center Innovation Fund: LaRC CIF

Drag Reduction and Flight Control Using Off-Body Energy Deposition

Completed Technology Project (2015 - 2018)

Technology Areas

Primary:

- TX06 Human Health, Life Support, and Habitation Systems
 - └─ TX06.5 Radiation
 - ☐ TX06.5.5 Monitoring Technology

Target Destination Earth

